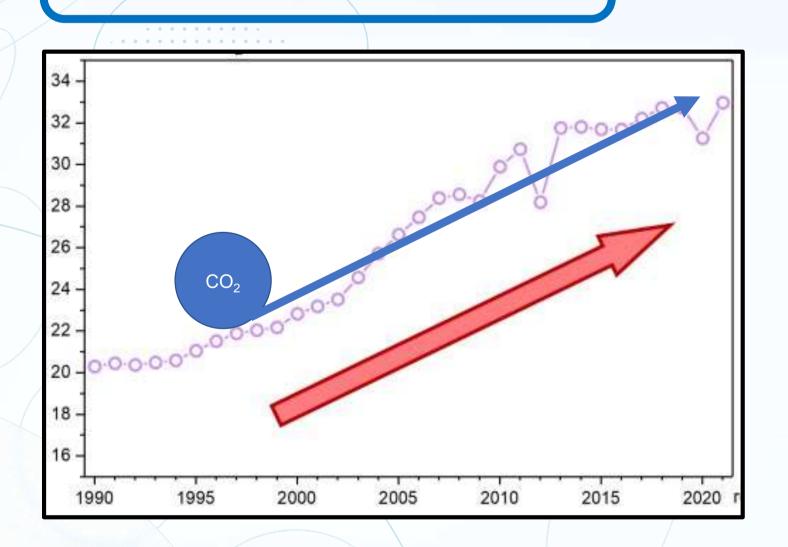


ВОДОРОДНОЕ БЛАГОУСТРОЙСТВО

Казанский государственный энергетический университет



Актуальность проекта


Водородное благоустройство способствует созданию более здоровых условий жизни для людей

Одной из глобальных проблем человечества является изменение климата из-за выброса парниковых газов

Масса парниковых газов в пересчете на CO₂, млрд. т.

Количество выбросов парниковых газов во всём мире за 1990 - 2022 г.

Основными эмиттерами парниковых газов являются электростанции и автомобильный транспорт

Переход на водородную энергетику поможет значительно снизить выбросы парниковых газов

Проблема

Производство тепловой и электрической энергии с нулевым углеродным следом

Создание водородной инфраструктуры

Проблема	Почему существующих вариантов решения не достаточно?
Экологические вызовы - высокий уровень выбросов парниковых газов при использовании органических топлив	Мы предлагаем самые современные решения в области водородных гибридных энергоустановок на базе топливных элементов, которые обеспечивают высокую производительность и оптимальное энергопотребление
Технологические барьеры: недостаточное развитие и доступность водородной инфраструктуры (водородных АЗС)	Водородные АЗС для транспорта с нулевым выхлопом, работающие при различных давлениях при 350 бар - 700 бар, что соответствует стандартам для легковых и грузовых транспортных средств.
Отсутствие эффективных и экономически выгодных технологий для хранения и транспортировки водорода	Сравнение с существующими аналогами улучшенные характеристики водородной безопасности могут привлечь клиентов, которые ищут передовые и надежные технологии; экологические показатели.

Наши продукты помогут снизить углеродный след и поддержать экологические инициативы, внося вклад в борьбу с изменением климата и повышение устойчивости к экологическим рискам

Решение

Инновационность, водородная безопасность, экологичность, пользовательский опыт, удобство обслуживания

Исследование и разработка

экологически чистых гибридных энергоустановок на базе топливных элементов; водородных АЗС

Прототипирование и тестирование пилотных установок производства экологически чистой энергии, водородных заправочных станций для проверки концепций и технологий

Разработка и тестирование систем водородной безопасности, включая датчики утечки водорода и аварийные отключения

Устойчивое развитие

Экологические чистые технологии

Водородное благоустройство

Рынок

Ключевые направления использования водорода в перспективе: декарбонизация промышленности; декарбонизация транспорта; декарбонизация сектора ЖКХ.

Типы водорода

• Низкоуглеродный (электролиз на базе АЭС, ГЭС)


Необходимые инвестиции 26 млрд\$

• Возобновляемый

Атлас российских проектов по производству низкоуглеродного и безуглеродного водорода

Согласно прогнозам EnergyNet, в ближайшие годы рынок водородной энергетики в России будет активно развиваться и в 2025–2035 гг. может достичь объемов в 2,2–3,9 млрд. долл.

Объем мирового рынка в 2025 г. составит 26 млн. долл..

К 2030 г. Россия сможет производить уже 3,5 млн. тонн водородного топлива.

Основные характеристики мирового рынка водорода, данные МЭА

	Ед. измерения	2020	2025	2035	2050
Производство энергии	ЭксаДжоуль	589	620	661	674
Производство водорода	млн т	90	105	150	250
Доля энергетического водорода	%	1	5	25	50
Себестоимость взвешенная	долл/кг	1,22	1,55	2,05	2,37
Общая себестоимость	млрд долл	1	8	77	296
Экспорт из РФ водорода	млн т	0	0,2	2-12	15-50
Доля экспорта РФ на мировом рынке водорода	%	0	4	5-32	12-40

Бизнес-модель

Водородное благоустройство

Основные партнеры:

Поставщики оборудованияИнвесторы

Технические параметры продуктов:

гибридных энергоустановок на основе твердооксидных топливных элементов КПД -95 %;

Водородной АЗС — максимальная пропускная способность и скорость заправки, работа при различных давлениях при 350 бар - 700 бар, что соответствует стандартам для легковых и грузовых транспортных средств, надежность и долговечность

Сегменты клиентов:

Потенциальные потребительские сегменты:

- коммунальные предприятия,
- -транспортный сектор,
- сфера услуг,
- -жилой сектор,
- инвесторы в устойчивое развитие (экологически чистые технологии).

Ценностное предложение:

-выбросы вредных веществ **0**% - "Водородного благоустройства" - это инвестиция в будущее, где чистая энергия и устойчивое развитие идут рука об руку с экономической эффективностью и надежностью."

Основные конкуренты

Зарубежные компании: Air Liquide и Linde, которые строят и эксплуатируют водородные заправочные станции; производители водородных топливных элементов Ballard Power Systems и Plug Power, нефтегазовые корпорации, расширяющие свою деятельность в области водородной энергетики.

Крупные инновационные стартапы российских участников консорциума "Водородные технологии"

Финансовые параметры.

привлечение инвестиций от венчурных фондов, бизнесангелов или через государственные гранты и субсидии; разработка подробного финансового плана с четкими бюджетами для каждого направления деятельности; конкурентоспособной ценовой стратегии, основанной на анализе затрат.

Каналы сбыта: Прямые продажи: B2B (Business to Business) (продажи крупным корпоративным клиентам, таким как транспортные компании, производители автомобилей, и операторам заправочных станций). Государственные контракты: участие в тендерах и государственных закупках для обеспечения инфраструктуры общественного и коммерческого транспорта

Каналы Цифровой продвижения маркетинг: разработка профессионального сайта с полной информацией о продукте, технологии и преимуществах для потребителей; контентмаркетинг (публикация образовательного информационного контента, такого как блоги исследования, для статьи и привлечения заинтересованных посетителей); активное присутствие социальных сетях для взаимодействия аудиторией С распространения контента.

Традиционный маркетинг: участие в отраслевых выставках и конференциях, создание брошюр, флаеров.

35

Водородное благоустройство

Уровни готовности технологии. TRL 1: Начальное концептуальное исследование и документирование основных принципов технологии

TRL 2: Технологические концепции начинают формироваться, исследования направлены на практическое применение открытых принципов.

• Изучение архитектуры водородных систем

TRL 3: Первые эксперименты проведены для подтверждения аналитических прогнозов относительно элементарных процессов технологии.

• Математическое моделирование различных физических процессов, включая электрохимические реакции и тепловые потоки в гибридных системах производства экологически чистой энергии

Команда

Ключевые члены ваше команды (СЕО, СТО и СМО), опыт и компетенции;

ГАЙНУТДИНОВ ФАРИТ РИНАТОВИЧ ЛИДЕР СЕО

ФАХРУЛЛИН БУЛАТ

CTO

ВАФИНА ЭЛИНА АИРАТОВНА СМО

РАНИФ

CTO

БАШАРОВ ИСЛАМ ФАТХРАХМАНОВИЧ СМО

CTO

ВЛАДИМИРОВА КАРИНА СЕРГЕЕВНА СМО

СЕРИКБАЕВ ЭЛНУР БАУЫРЖАНОВИЧ СМО

Планы развития

Устойчивое развитие, стремление к сокращению углеродного следа на всех этапах производства энергии и эксплуатации городского транспорта

Краткосрочный план (1-4 года): Среднесрочный план (5-10 лет) Долгосрочный план (6-15 лет):

Этапы

- Получение финансирования
- Финализация научно-технических решений и получение необходимых патентов

реализаци

- Создание гибридной экологически чистой энергоустановки на базе топливных элементов
- Строительство и тестирование пилотной АЗС

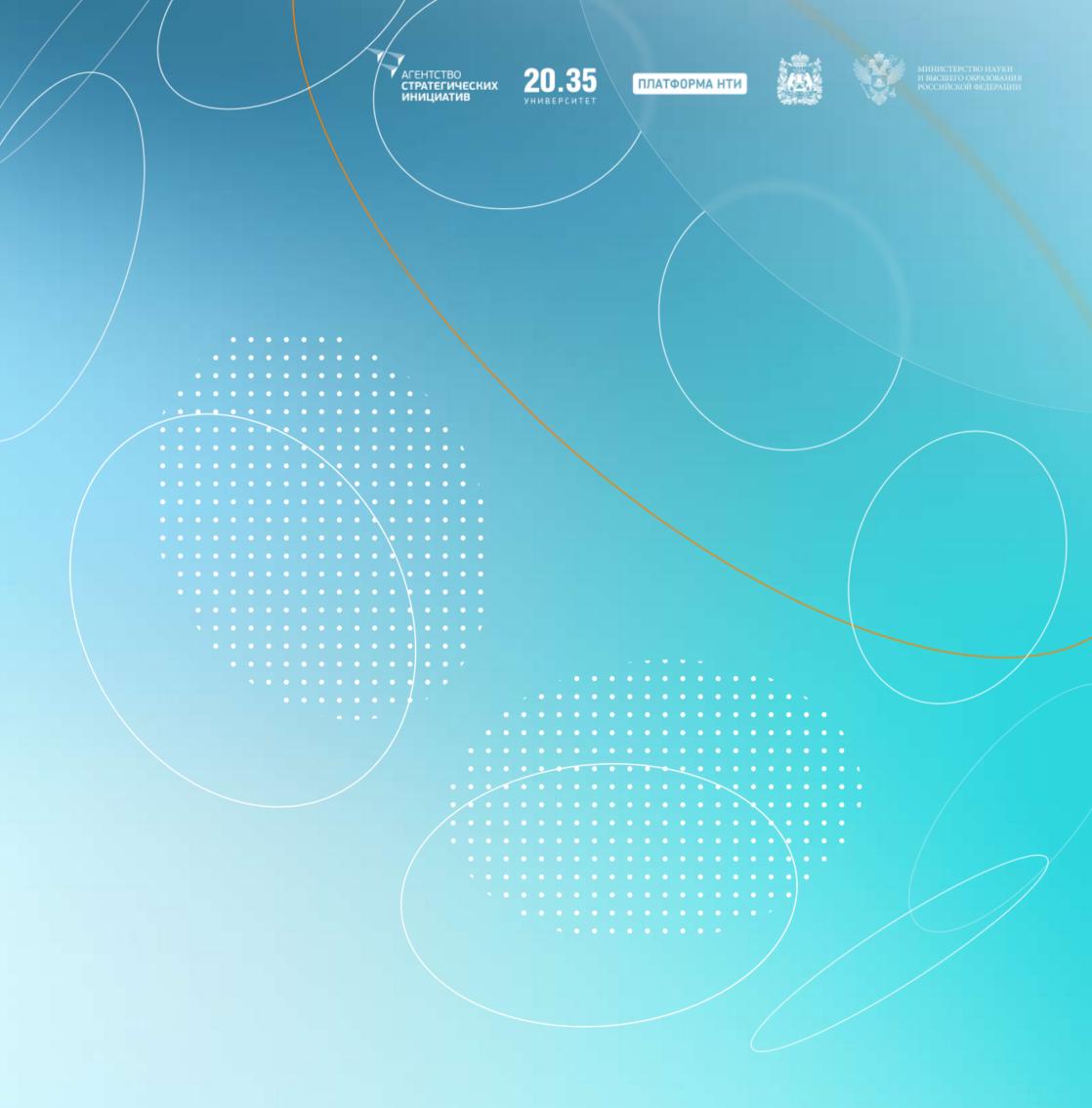
проекта

- Разработка бизнес-модели и маркетинговой стратегии
- Внедрение автоматизации и роботизации для повышения производительности водородных энергоустановок

Энерго установ ки на ТЭ • Проведение лабораторных испытаний и прототипирование ключевых компонентов

Водород ные АЗС • Построение первой водородной АЗС для демонстрации технологии и привлечения первых клиентов

Водород ный транспорт Масштабирование производства: расширение производственных мощностей в соответствии с растущим спросом



Контакты

Сайт https://kgeu.ru/Home/About/12

Телефон +7 (917) 8561113

email <u>khimiya_kgeu@mail.ru</u>

